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The numerical method for analyzing transient eddy currents on thin conductors with 
arbitrary connections and shapes is presented. The eddy currents are described by current 
functions and discretited in the usual manner of the finite element method. This method is 
successfully applied to the eddy currents on a sphere surface, a square plate and INTOR-J 
primary shield. It is shown that this method is accurate and efficient to analyze the eddy 
currents on complicated conductor structures. 

I. INTRODUCTION 

In magnetically confined fusion devices like Tokamak, time varying magnetic fields 
induce transient eddy currents in conductive structures, i.e., vacuum chambers, 
blankets, shields, supports and others. The eddy currents exert mechanical loading to 
the structures by the interaction with magnetic fields and the loading must be 
considered in the structural strength analysis. The error fields by the eddy currents 
have important effects on the plasma behaviours. And the Joule heat depositions by 
the eddy currents are not negligible in the superconducting toroidal magnet casings 
and others. 

In this paper, transient eddy currents on thin conductors are analyzed numerically. 
Various methods have been reported in the analysis of the eddy currents on thin 
conductors [l-5]. But the methods are applicable only to limited cases or are difficult 
to apply to more complicated structures. In this paper, the earlier work [I ] is 
generalized and the method presented is the calculation of eddy currents on thin 
conductors with arbitrary connections and shapes when time varying magnetic fields 
are applied externally. In this method the eddy currents on thin conductors are 
described by current functions and energy integrals are represented by means of the 
current functions. The conductor surface is divided into finite elements and the energy 
integrals are reduced to discrete forms. The circuit equations of nodal values of 
current functions are formulated. 

In the application of the thin conductor approximation, the skin time of the 
conductor r sk,n ~,u,,ad’ @,, is the vacuum permeability, and u and d are the electric 
conductivity and the thickness of the conductor, respectively) must be sufficiently 
small compared with the characteristic time of the external field variations. The 
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thickness of the conductor is neglected and the current is assumed to flow in the 
infinitesimally thin conductor, i.e., on the conductor surface. 

In Section II, basic formulations of equations for eddy currents are presented. In 
Section III, discretization of the conductor surfaces to finite elements is formulated. 
In Section IV, the numerical method is applied to the eddy currents on a sphere 
surface, a square plate and INTOR-J primary shield and discussed. In Appendix A, 
the eddy currents on a sphere surface are formulated analytically. 

II. BASIC FORWJLATIONS 

A thin conductor structure is divided into subconductors Sri’s (n = l,..., Nsub), each 
of which is bounded by a simple closed boundary C,. Each subconductor is insulated 
or connected with other subconductors or itself only on its boundary. There is neither 
source nor sink of current on the interior of each subconductor. The normal unit 
vector n(x) at each position x on the subconductors and the boundary direction of 
each subconductor are defined as shown in Fig. 1. 

The current divergence is equal to zero on each subconductor, so the current linear 
density is described by a current function L’ which is a function of time and position. 
on the subconductor (6) and given by 

j=VI/Xn. ,’ 1 ‘t \ 1 

The operations of vector differentiation on a surface are defined in Ref. [6]. The 
current flows along the lines of V= constant. An arbitrary constant can be added to 
V, and V can and must be fixed to zero at a certain point on each subconductor to 
e!iminate the arbitrariness. 

The magnetic vector potential A at any position X induced by the current on the 
conductor is given by 

PIG. I. A connected thin conductor and its division into subconductors 
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Here, the integration is all over the conductor surface. And the total magnetic energy 
by the current on the conductor is given by a double area integration, 

When an external magnetic field is represented by magnetic vector potential Ae”, the 
mutual magnetic energy between the current on the conductor and the external 
magnetic field is given by 

U, = 
I 

A’” .j ds. (4) 
s 

The total Joule loss per unit time by the current on the conductor is given by 

Here, p,, and p- are the electric area resistivities of the conductor in the principal 
directions and j,, and j, are the current density components in the principal 
directions. The components are given by j,, = T,, . j and j = T . j, where i,, and T- 
are the unit vectors in the principal directions. 

Boundary conditions are formulated as follows. Consider a boundary line C on 
which one or several subconductors are connected as shown in Fig. 2. The total 
current flowing into C is equal to zero, so the boundary condition is given by 

,*+o. (6) 

Here, V, is the current function on the subconductor S,, V, is differentiated along C 
and the summation is for all subconductor boundaries connected on C with the 
positive sign when the direction of the differentiation coincides with the direction of 
C, or with the negative sign when it is inverse. When only one subconductor 
boundary is on C, Eq. (6) shows that V is constant along C and current does not 
intersect C. Equation (6) is a generalization of Kirchhoff’s first law. 

FIG. 2. A boundary line C where three subconductors are connected. 
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Symmetry conditions are formulated as follows. Now, it is assumed that the 
conductor is invariant for a certain transformation T (rotation, inversion or 
reflection). In this case, for any point x on the conductor, the transformed point x’ 
given by 

x’ = TX (7 j 

is also on the conductor and normal vectors, principal vectors and electric area 
resistivities have the relations given by 

n(x’) = h(x), +> = TT!,b), 5 (x’) = Tr;(x), _ 

PllW ‘P,,(X) and P. w> =P.b)* 

If the current function has a relation given by 

V(x’) = I V(x), 

(8) 

P? 

here I is equal to 1 or -1, then the current density has the relation given by 

j(x’) = V’ V(x’) x n(x’) = I . det T. Tj(x), (10) 

and similarly the magnetic vector potential has a relation given by 

A(x’) = I . det T . T A(x), (il) 

here the determinant of T is equal to 1 or -i. Inversely, if the external magnetic field 
Ae” has the relation of Eq. (1 I), the current fumnction V has the relation of Eq. (9). 

III. DISCRETIZING INTO FINITE ELEMENTS 

Here, the conductor is discretized into triangular finite eiements and the current 
function V is represented by the linear function of nodal values of current function for 
simplicity. It is easy to formulate the discretization by finite elements with more 
general shapes and functions of higher order. The value of the current function at 
each node is denoted by a nodal value of current function I’, (n = l,..., Nnodc, Nnodp is 
the total number of nodes). 

For each triangular element, there are three node numbers whose vertexes are i:,j 
and k by numbering clockwise in the direction of normal unit vector n; any positior 
in the element is represented by the local coordinates L,, Li and L, as 

X=L,Xi +LjXj+LkXkr (12) 

here xi: xj and x,,, are positions of vertexes and 

L,+Lj+L,= 1 and O<L,,L,,L,< 1. (13) 
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The local coordinate L, is given by 

&?!&, 
4 (14) 

here A, and A,, are areas of the element and the triangular p-j-k, respectively, as 
shown in Fig. 3. The current function at the point x given by Eq. (12) is given by 
nodal values of current function Vi, V, and V, as 

v=L,vi+Ljvj+L,v,. 

The current density is given by substituting Eq. (15) into Eq. (1) as 

(15) 

j = Vie, + VJej + V,e, , (1’5) 

here 

‘k - ‘J xI - xk 
ei=24,, e,=zd,’ 

xj - xi 

ek=le. 
(17) 

By substituting Eq. (16) into Eq. (3) the total magnetic energy is given by 

(19) 

and in Eq. (19), the double area integrations are summed for the elements e one node 
number whose vertexes are i and the elements e’ one node number whose vertexes are 
i’. By substituting Eq. (16) into Eq. (5), the total Joule loss per unit time is given by 

.s’,,tidc Nee 

Wi= 2 1 Rii,ViVi,, 
I=1 i’=I 

k 

i j 

(20) 

FIG. 3. A triangular finite element. 
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here 

(21) 

and eIIi=e,.t,, and eei=e,.t . In Eq. (21), the integrations are summed for the 
elements e, two node numbers whose vertexes are i and i’. By substituting Eq. (16) 
into Eq. (4), the mutual magnetic energy is given by 

.ve 
u,= 2 E,V,. (22) 

i I 

here 

E, = x , A’” . e,ds, 
! e e 

(23) 

and in Eq. (23), the integrations are summed for the elements e, one node number 
whose vertexes are i. 

The matrices M and R whose components are M,,, and R,,, (i, i’ = I,..., Nnodc) are 
called inductance and resistance matrices, respectively, and symmetric and positive- 
definite matrices because of the physical meaning. And E whose components are E, 
are called the externally applied voltage. When the conductor is symmetric for a 
certain transformation, if the points i and i’ are transformed to the points j and j’? 
respectively, 

Mjj, = Miir, R,, = Riir, Ej= 15~. (24) 

The boundary conditions, symmetry conditions and the condition that the current 
function at a certain point of each subconductor is equal to zero are represented by 
the relation given by 

V=HV’, (25) 

where V is a vector whose components are the nodal values of current function, V” is 
a vector whose components are independent variables and whose dimension, Nine;, is 
equal to Nnode minus the total number of independent conditions. The matrix H is a 
N node x N,,,,, matrix. 

By substituting Eq. (25) into Eqs. (18), (20) and (22), the summations are 
represented by independent variables as 

W / = V’ R V = V”’ R” V” 

and 
We = E’ V = Eof V”, j2h‘i 



130 AKIHISA KAMEARI 

where 

M’=H’MH, R” = H’ R H, E’=H’E. (27) 

The superscript t denotes the transposition of the matrices. The reduced matrices MO 
and R” are also symmetric and positive-definite matrices. 

The “Lagrangian” of the system is 9 = U,,, + U, and the “dissipative function” is 
9 = Wji2. “Lagrangian’s equation” is [ 7 1, 

(28) 

Here the term of the electric field energy is neglected. Equation (28) is reduced into 
the circuit equation of the independent variables as, 

This equation is a N,,,-dimensional first order differential equation, and can be 
solved numerically using the Runge-Kutta method or the method of the expansion by 
eigenvectors [ 1 J. 

IV. APPLICATIONS 

IV. 1. A Sphere Surface 

The eddy current on a sphere surface with a uniform area resistivity is formulated 
in Appendix A. Here consider a sphere surface of radius a = 1 m and electric area 
resistivity p = 1 R and suppose that the current function V is symmetric to d = 0 and 
4 = n/2 and antisymmetric to 19 = n/2. In this case, the terms of Eq. (A.4) are 
summed for odd numbers n’s and even numbers M’S. 

In the numerical calculation, the sphere surface is discretized as shown in Fig. 4 in 
four different cases a, b, c and d. In Fig. 4, a part (0 < 4 ( n/2, 0 <B < n/2) is 
projected to the z = 0 plane. The numbers of elements NC’s are 25, 100, 225 and 100 
in cases a, b, c and d, respectively. The discretizations are symmetric to d = r/4 in 
cases a, b and c and asymmetric in case d. 

The eigenvalues (Eq. (A.7)) and the relative errors are shown in Table I for the 
formula and the numerical solutions. The current functions of eigenmodes (Eq. (A.5)) 
are also numerically calculated and the errors show the same tendency as those of the 
eigenvalues. It is evident from Table I that more accurate eigenvalues are calculated 
for finer meshes and lower mode numbers. It shows that the dimensions of elements 
must be small enough compared with the characteristic length of current distribution 
for accurate calculations. 
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t Bz 
FIG. 4. Finite elements and current distributions on a sphere. (a) IVY z 25, (bj ?\‘? = :%I. 

(c, N, = 225 and (d) A’, = 100. 

We consider the case where a uniform magnetic field Bz = 1 T in the z direction is 
exerted suddenly at t = 0 on the sphere surface. The current distributions at 
t = lo-’ set are shown in Fig. 4 and the current functions at t = lo-’ set on the x 
axis and the variations of the Joule losses all over the sphere surface are shown with 
the relative errors in Tables II and III, respectively. In this case, only the (I, Gj mode 
is induced, so the errors show the same tendency as the errors of the eigenvalues of 
the (1,0) mode. There is no significant difference between cases b and d. 

It is evident that the results by this method correspond well to the analytic results 
and are more accurate as the meshes are finer. 
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TABLE I 

Eigenvalues ( X IO-’ set) of Eigenmodes on a Sphere (a = 1 m, p = 1 Q) and Relative Errors (%) 

Case 

Mode No. 

(a ml Formula (‘y.” 25) (N, =b 100) (P&:225) (Iv, =” 100) 

(ho) 4.1888 4.1ooo 4.1785 4.1835 4.1811 
2.12 0.25 0.13 0.18 

(3,O) 1.7952 1.6239 1.7557 1.7771 1.7554 
9.54 2.20 1.01 2.22 

(3.2) 1.7952 1.6288 1.7544 1.7768 1.7496 
9.27 2.27 1.02 2.54 

(570) 1.1424 0.9652 1.0847 I.1 161 1.0815 
15.51 5.05 2.30 5.33 

(532) 1.1424 0.9404 1.0759 1.1120 1.0713 
17.68 5.82 2.66 6.22 

(534) 1.1424 0.883 1 1.0759 1.1034 1.0560 
22.70 5.82 3.41 7.56 

IV.2. A Square Plate 

When a uniform magnetic field with constant rate of change is exerted normally to 
a rectangular plate, the current function is given by [ 8 J, 

V(x,y)=-f-B x*-a’+ 
I 75 

(- 1)” 

2 P n=O (2n t 1)” cosh(2n + l)(nb/2a) 

XY 7x 
xcosh(2n + 1) 2a * cos(2n + 1) 2a 

I 
, 

TABLE II 

Current Function V(6’, Q = 0) ( X IO-’ A/m) and Relative Errors (%) at I = 10 -‘sec. 

Case 

e 
(degree) Formula (Iv’, 125) (N,=blOO) (N,=c225) (iv&0) 

0 9.402 9.155 9.308 9.358 9.298 
2.63 1.00 0.47 1.1 I 

18 8.941 8.842 8.903 8.926 8.894 
1.11 0.43 0.17 0.53 

36 7.606 7.553 7.576 7.593 7.567 
0.70 0.39 0.17 0.51 

54 5.526 5.478 5.502 5.516 5.497 
0.87 0.43 0.18 0.52 

72 2.905 2.869 2.891 2.899 2.888 
1.24 0.48 0.2 1 0.59 
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TABLE III 

Joule Loss ( x 1O’4 W) and Relative Errors (%) 

Case 

Time 
(x 10 -p 

--_-- 

1 

2 

3 

4 

9 

10 

Formula 
- .----- 

7.4049 

4.5937 

2.8497 

i.7678 

1.0967 

0.6803 

0.4220 

0.2618 

0.1624 

0.1008 

(N, : 25) (N, =b 100) &225) (,V, =” loo) 

7.0377 7.2799 ?.350! 7.2664 
4.96 1.69 0.74 1.87 
4.3209 4.5 108 4.5569 4.5038 
5.94 1.80 0.80 1.96 
2.6529 2.1950 2.82S2 2.7915 
6.91 1.92 0.86 2.04 
1.6288 1.7318 1.7516 1.7302 
7.86 2.04 0.92 2.13 
1.0005 1.073: 1.0859 1.0724 
8.36 2.15 0.98 2.22 
0.6140 0.6649 0.6733 0.6647 
9.75 2.26 1.03 2.29 
0.3770 0.4120 0.4174 0.4120 

10.66 2.31 1 .OY 2.37 
0.23 15 0.2553 0.2588 0.2553 

11.57 2.48 I.15 2.48 
0.1421 0.1582 0.1604 3.1583 

12.50 2.59 1.23 2.52 
0.0873 0.0980 0.0995 0.098 i 

13.39 2.78 1.29 2.68 

here 2a, 2b and p are the x dimension, the y dimension and the electric area resistivity 
of the plate and B is the rate of the change of the external magnetic field. On the 
boundary, V = 0. 

Now we consider a case where a = 1 m, b = 1 m, p = 1 Q and 8 = 1 T/EC. In the 
numerical calculation, the square plate is discretized as shown in Fig. 5 in the 
different cases a, b and c. In Fig. 5, a part (0 < y < x) is shown. The current function 
is symmetric to y = 0 and to the rotation of n/2 around the z axis. The numbers of 
elements are 25, 100 and 91 in cases a, b and c, respectiveiy. In case c, the region 
near the boundary is divided into smaller elements because of the higher current 
density. 

The current distributions which are time independent are shown in Fig. 5. In Table 
IV. the current functions on the x axis and the errors are shown for Eq. (30) and the 
numerical solutions. In case c, the fine distribution near the boundary can be seen 
and the errors are smaller near the boundary than the errors in cases a and b. 

It is shown here that there is no problem in using elements of different dimensions 
at the same time in our method and it is effective to divide into smaller elements at 
the region where the current density is higher or the detail distribution must be 
calculated. 
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t Bz 

FIG. 5. Finite elements and current distributions on a square plate. (a) N, = 25, (b) N, = 100 and 
(c) N, = 8 1. 

TABLE IV 

Current Function V (x, y = 0) (A) and Relative Errors (96) on a Square Plate 
(a=lm,b=lmandp=lR) 

Case 
- 

Formula (N, : 25) (N, =b 100) (N&,281) 

0.0 0.2946 

0.2 0.2846 

0.4 0.2535 

0.6 0.1988 

0.8 0.1162 

0.84 0.09582 

0.88 0.07408 

0.92 0.05090 

0.96 0.02622 

0.2994 0.2963 0.3000 
I.63 0.58 1.84 
0.286 1 0.2850 0.2866 
0.52 0.14 0.70 
0.2537 0.2536 0.2542 
0.07 0.03 0.27 
0.1985 0.1988 0.1987 
0.15 0.01 0.05 
0.1 I59 0.1 161 0.1150 
0.23 0.06 1.01 
0.09272 0.09472 0.09499 
3.23 1.15 0.86 
0.06954 0.07333 0.0735 1 
6.12 1.01 0.77 
0.04636 0.050 1 I 0.05055 
8.91 1.54 0.68 
0.023 18 0.02506 0.02605 

11.60 4.43 0.65 
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IV.3. INTOR-.i Primary Shield 

We analyze the eddy current on the primary shield of INTOR-J design [9] when 
the plasma current disrupts rapidly. The calculationai model is shown in Fig. 6. Ha!f 
of one sector of the primary shield is composed of an inner plate, an outer plate and 
two side plates. The plates are welded and conduct mutually. The sectors are 
connected by bellows and form a torus. Actually there is a plate at the toroidal angle 
Q = 0 but it is negligible because there is no current on it because of the symmetry. 
The current function is symmetric to they = 0 plane and the rotation of 30” around 
the z axis and antisymmetric to the z = 0 plane. 

The material of the plates and bellows is stainless steel and electric volume 
resistivity p is 7.2 x IO-‘Rm. The outer plate, the inner plate, side plate 1 and side 
plate 2 are 4, 12* 3 and 10 cm in thickness, respectively. The bellows is supposed to 
have effective area resistivities in the toroidal and poloidal directions given by 

here d = 1.5 mm and f = 8.2/R (m). R is the distance from the z axis. The 12 be!lows 
have the total one-turn resistance 0.2 mQ in the toroidal direction. 

FIG. 6. A calculational model of INTOR-J primary shield. 
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FIG. 7. Eddy current distributions on INTOR-J primary shield. (a) Side plate 2 viewed toward C. 
(IJ) Side plate 1 viewed toward C. (c) lnboard of outer plate viewed toward B. (d) inboard of inner plate 
viewecf toward 8. (e) Outboard of inner plate viewed toward A. (f) Outboard of outer plate vicwcd 
toward A. 

Tfmsec) 

FIG. 8. Variations of integrated currents flowing through plates, 
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The plasma current is supposed to decay as 

Ip=IpOe-“’ (I,, = 4.7 MA, r = 10 msec) (32) 

and is approximated by a ring current of the major radius of 5.0 m. 
The current distribution at 20 msec after the initiation of the plasma current decay 

is shown in Fig. 7. The current flows in the direction of the plasma current at the 
inner plate and into the outer plate and the bellows through side plate 2. The currents 
in side plate 1 and the outboard of the outer plate are low. The toroidal current 
distribution is flat in the poloidal direction at the bellows. 

In Fig. 8, the variations of the integrated currents through plates in the toroidai 
direction are shown. The integrations are over the upper half in the poloidai direction. 
The one-turn current through the bellows shown by line 2 has the maximum va!ue 
0.96 MA at 15 msec and the current through the outer plate shown by line I minus 
line 2 has the maximum value 0.76 MA at 30 msec. 

V. CONCLUSIONS 

In our numerical method, the thin conductors are discretized to finite elements and 
Iumped electric constants (inductances, resistances and applied voltages) are 
integrated for the distributed currents on the elements. The circuit equations a.re 
solved in the usual manner of the inductance and resistance circuits. 

Because the conductors are discretized in the same manner of the finite elements 
method. the method has the following advantages: 

(a) The non-uniform and non-isotropic electric resistivities are treated. 
(b) It is easy to discretize arbitrarily shaped conductors into finite elements 

and to discretize a certain region into finer elements. 
(c) The boundary and symmetry conditions are easily included. 

The method is also applicable to arbitrarily connected conductors by means of the 
boundary conditions which have the same meaning of Kirchhoff’s first law. 

The resistance and inductance matrices are symmetric and positive-definite, so it is 
a mathematically trivial problem to solve the circuit equations. The numerically 
calculated eigenmodes and eigenvalues correspond to the independent current modes 
and their time constants in physical meaning as shown in the application to a sphere 
surface. So it is possible to investigate the response of the eddy current qualitativei! 
or quantitativeiy by means of the calculated eigenmodes and eigenvalues. 

In the applications to a sphere surface and a square plate, it is shown that the 
numerical results correspond well to the results given by the formulas and the 
accuracy is raised by finer elements. It is also shown that it is efficient to discretize 
certain regions into liner elements. In the application to the INTOR-J primary shield. 
it is shown that this method is applicable and efficient for the eddy current 
calcuiations of thin complicated conductors with arbitrary connections and shapes. 
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APPNDIX A: EDDY CURRENTS ON A SPHERE SURFACE 

It is possible to formulate analytically the eddy currents on a sphere surface with a 
uniform resistivity by the expansion of spherical harmonic functions. We consider a 
sphere surface with the radius a and the area resistivity p and let (r, 8,d) to be the 
spherical coordinate. 

Any external magnetic field can be represented by a magnetic scalar potential as 

and the magnetic 
spherical harmonic 

BeX zz - v’J’= 9 64.1) 

scalar potential symmetric to $ = 0 can be expanded by the 
functions as 

here 

and 

” Pr (cos 8) cos rn# (for m # 0). (A.3) 

P,‘s and P,“‘s are Legendre’s functions and associated Legendre’s functions. The coef- 
ficients e;‘s are functions of time. 

When the external magnetic field given by Eq. (A.2), is exerted, the current 
function of the induced eddy current is given by 

64.4) 

here 

y”, = + y/f~P,‘(cos e) 

and 

c=~2n(n+m)!n(n+ 1) n 
’ 4n - 4 (2n + 1) pm (cos e) cos mti (for m # 0). (A-5) 

The independent equations of the coefficients af’s are given by 

d 1 d 
-af+,ar=-;,ez, 
dt 

64.6) 
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here 

Pea 
5r=p(2n+ 1)’ 

(‘4.7) 

The functions c’s represent eigenmodes of the current on a sphere and 7:‘s represent 
their eigenvalues. The components of the current density are given by 

,- 

and j,=L"v. 
a sin 6 26 64.8) 

When a uniform magnetic field in the z direction B2 is exerted on the sphere 
surface, the magnetic scalar potential is given by 

here 

!F=-B;.z=-B,rP(cos@=ef ‘vi1 (A.9 j 

If we represent the current density as 

j, = j" cos 6 and ,jn = 3, 

for J”. 

here 
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